Some Improvements in Tree Based Nearest Neighbour Search Algorithms
نویسندگان
چکیده
Nearest neighbour search is one of the most simple and used technique in Pattern Recognition. In this paper we are interested on tree based algorithms that only make use of the metric properties of the space. One of the most known and refereed method in this class was proposed by Fukunaga and Narendra in the 70’s. This algorithm uses a tree that is traversed on search time and uses some elimination rules to avoid the full exploration of the tree. This paper proposes two main contributions: two new ways for constructing the tree and two new elimination rules. As shown in the experiment section, both techniques reduce significantly the number of distance computations.
منابع مشابه
Testing Some Improvements of the Fukunaga and Narendra's Fast Nearest Neighbour Search Algorithm in a Spelling Task
Nearest neighbour search is one of the most simple and used technique in Pattern Recognition. One of the most known fast nearest neighbour algorithms was proposed by Fukunaga and Narendra. The algorithm builds a tree in preprocess time that is traversed on search time using some elimination rules to avoid its full exploration. This paper tests two new types of improvements in a real data enviro...
متن کاملSome improvements on NN based classifiers in metric spaces
The nearest neighbour (NN) and k-nearest neighbour (k-NN) classification rules have been widely used in Pattern Recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search may become unpractical when facing large training sets, high dimensional data or expensive dissimilarity measures (distances). During the last years a lot of fast NN search algorithms have been d...
متن کاملSome approaches to improve tree-based nearest neighbour search algorithms
Nearest neighbour search is a widely used technique in pattern recognition. During the last three decades a large number of fast algorithms have been proposed. In this work we are interested in algorithms that can be used with any dissimilarity function provided that it fits the mathematical notion of distance. Some of such algorithms organize, in preprocessing time, the data in a tree structur...
متن کاملThe Area Code Tree for Approximate Nearest Neighbour Search in Dense Point Sets
In this paper, we present an evaluation of nearest neighbour searching using the Area Code tree. The Area Code tree is a trie-type structure that organizes area code representations of each point of interest (POI) in a data set. This data structure provides a fast method for locating an actual or approximate nearest neighbour POI for a query point. We first summarize the area code generation, i...
متن کاملWhich Fast Nearest Neighbour Search Algorithm to Use?
Choosing which fast Nearest Neighbour search algorithm to use depends on the task we face. Usually kd-tree search algorithm is selected when the similarity function is the Euclidean or the Manhattan distances. Generic fast search algorithms (algorithms that works with any distance function) are only used when there is not specific fast search algorithms for the involved distance function. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003